## END-EXAM MODEL PAPERS STATE BOARD OF TECHNICAL EDUCATION, A.P C-23 ENGINEERING MATHEMATICS-I, C- 102



11. Solve the system of linear equations x+y+z=6, x-y+z=2 and 2x+y-z=1 using matrix inversion method. (CO1)

12. A) Show that 
$$\frac{\sin 7\theta + \sin 5}{\cos 7\theta + \cos 5\theta} = tan 6\theta.$$
 (CO2)

B) Prove that 
$$tan^{-1}\left(\frac{1}{7}\right) + tan^{-1}\left(\frac{1}{13}\right) = tan^{-1}\left(\frac{2}{9}\right)$$
 (CO2)

| 13. | A) Solve $(2\sin x - 1)(\tan x - \sqrt{3}) = 0.$                                                                                  | (CO2)         |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|     | B) If a =10, b=12, c =5, then find the area of the $\triangle$ ABC.                                                               | (CO2)         |  |
| 14. | A) Find the equation of the circle with (4, 2) and (1, 5) as the two ends of its diameter.                                        |               |  |
|     | (CO:                                                                                                                              | 3)            |  |
|     | B) Find the equation of the conic whose focus is (1,0), directrix is 3x+4y+1=0 and                                                |               |  |
|     | eccentricity is 2.                                                                                                                | (CO3)         |  |
| 15. | A) Find the derivative of $3tanx - 4logx - 7e^x + \sin^{-1}x$ w.r.t x.                                                            | (CO4)         |  |
|     | B) Find the derivative of $x^2 e^{3x}$ w.r.t x.                                                                                   | (CO4)         |  |
| 16. | A) If $x = a(1 - \cos \theta)$ , $y = a(\theta + \sin \theta)$ , then find $\frac{dy}{dx}$ .                                      | (CO4)         |  |
|     | B) If $u(x, y) = x^2y + y^2x$ , then find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$                     | (CO4)         |  |
| 17. | A) Find the equation of tangent to the curve $y = x^2 + 1$ at (2,1).                                                              | (CO5)         |  |
|     | B) If the radius of a circular plate is increasing at 0.7 cm/sec, find the rate of increase in its area when the radius is 10 cm. | (CO5)         |  |
| 18. | A) Find maximum or minimum value of $f(x) = x^2 - 4x + 3$ .                                                                       | (CO5)         |  |
|     | B) If an error of 0.02 cm is made in the side of a square, what is the approxim                                                   | nate error ir |  |

B) If an error of 0.02 cm is made in the side of a square, what is the approximate error in the area and perimeter of the square? (CO5)

|        | STATE BOARD OF TECHNICAL EDUC<br>C-23 ENGINEERING MATHEMATIC<br><u>TIME: 3 HOURS</u><br>PART-A                                                          | CATION, A.P.<br>CS-I, C- 102<br>MAX.MARKS: 80M |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Ans    | swer All questions. Each question carries THREE marks.                                                                                                  | 10x3=30M                                       |  |  |
| 1.     | If A={-1, 0, 1} and $f: A \rightarrow B$ is defined by $f(x) = x^2 - x + 1$ ,                                                                           | then find the range of <i>f</i> .<br>(CO1)     |  |  |
| 2.     | Resolve the function $\frac{1}{(x+1)(x-2)}$ into partial fractions.                                                                                     | (CO1)                                          |  |  |
| 3.     | If $A = \begin{bmatrix} 3 & 9 & 0 \\ 1 & 8 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 0 & 2 \\ 7 & 1 & 4 \end{bmatrix}$ , then find $(A+B)^{T}$ . | (CO1)                                          |  |  |
| 4.     | If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ , then find $A^2$ .                                                                              | (CO1)                                          |  |  |
| 5.     | Find the value of $\frac{\cos 36^{0} + \sin^{-0}}{\cos 36^{0} - \sin 36^{0}} = \tan 81^{0}$ .                                                           | (CO2)                                          |  |  |
| 6.     | Prove that $\frac{1+\cos}{\sin 2\theta} = \cot \theta$ .                                                                                                | (CO2)                                          |  |  |
| 7.     | Find the modulus of the complex number 3+2 <i>i</i> .                                                                                                   | (CO2)                                          |  |  |
| 8.     | d the point of intersection of the non-parallel lines $x + y + 1 = 0$ and $2x - y + 5 = 0$ .                                                            |                                                |  |  |
|        |                                                                                                                                                         | (CO3)                                          |  |  |
| 9.     | Evaluate $\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$                                                                                                        | (CO4)                                          |  |  |
| 10.    | Find $\frac{dy}{dx}$ , if $y = x^3 + 5x$ .                                                                                                              | <b>(</b> CO4)                                  |  |  |
| PART-B |                                                                                                                                                         |                                                |  |  |
|        | Answer any FIVE questions. Each question carries TEN mark                                                                                               | s. 5x10=50M                                    |  |  |
| 11.    | . Solve the system of linear equations $x - y + 3z = 5$ , $4x + 2y - 3z = 5$                                                                            | -z = 0  and  -x + 3y + z = 5                   |  |  |
|        | using Cramer's rule.                                                                                                                                    | (CO1)                                          |  |  |
| 12     | A) Show that $cos40^{\circ} + cos80^{\circ} + cos160^{\circ} = 0$ .                                                                                     | (CO2)                                          |  |  |
|        | B) Prove that $tan^{-1}\left(\frac{1}{4}\right) + tan^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{4}$                                                     | (CO2)                                          |  |  |
| 13.    | 3. A) Solve $2\cos^2 \theta - 3\cos \theta + 1 = 0$ .                                                                                                   | (CO2)                                          |  |  |
|        | B) If a =5, b=7, C =30°, then find the area of the $\triangle$ ABC.                                                                                     | (CO2)                                          |  |  |
| 14     | 4. A) Find the equation of the circle passing through the points                                                                                        | (0, 0), (2, 0), and (0, 3) (CO3)               |  |  |

-000-

- B) Find the vertex, focus, directrix and latus rectum of the parabola  $y^2 = 16x$ . (CO3)
- 15. A) Find the derivative of  $3 \sin x + \log x + 2 \tan^{-1} x + 8e^{-x}$  w.r.t.x. (CO4)

B) Find the derivative of 
$$\frac{1-x^2}{1+x^2}$$
 w.r.t. x. (CO4)

16. A) If 
$$y = x^{\sin x}$$
, then find  $\frac{dy}{dx}$ . (CO4)

B) If 
$$y = \tan^{-1} x$$
, then prove that  $(1+x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} = 0.$  (CO4)

17. A) Find the equation of tangent to the curve 
$$y = x^3 - 2x^2 + 4$$
 at (2,4). (CO5)

- B) If  $s(t) = t^2 + 2t + 3$  is the displacement of a particle, find its velocity and acceleration at the time t=3 sec.
- 18. A) Find maximum or minimum value of  $f(x) = 3 + 10x 5x^2$ . (CO5)
  - B) If an error of 0.02 cm is made in the side of a square, then what is the percentage error in the calculated value of its area? (CO5)

-000-

(CO5)